
MVC: Model-View-Controller API

Version 1.0 Early Draft
March 25, 2015

Editors:
Santiago Pericas-Geertsen

Manfred Riem

Comments to: users@mvc-spec.java.net

Oracle Corporation
500 Oracle Parkway, Redwood Shores, CA 94065 USA.

ii MVC March 25, 2015

ORACLE AMERICA, INC. IS WILLING TO LICENSE THIS SPECIFICATION TO YOU ONLY UPON THE
CONDITION THAT YOU ACCEPT ALL OF THE TERMS CONTAINED IN THIS LICENSE AGREEMENT
(”AGREEMENT”). PLEASE READ THE TERMS AND CONDITIONS OF THIS AGREEMENT CAREFULLY.
BY DOWNLOADING THIS SPECIFICATION, YOU ACCEPT THE TERMS AND CONDITIONS OF THIS
AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND BY THEM, SELECT THE ”DECLINE” BUTTON
AT THE BOTTOM OF THIS PAGE AND THE DOWNLOADING PROCESS WILL NOT CONTINUE.

Specification: JSR-371 MVC (”Specification”) Version: 1.0
Status: Early Draft Review
Release: March 2015
Copyright 2015 Oracle America, Inc.
500 Oracle Parkway, Redwood City, California 94065, U.S.A.
All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protected by one or more
U.S. patents, foreign patents, or pending applications. Except as provided under the following license, no part of the
Specification may be reproduced in any form by any means without the prior written authorization of Oracle
America, Inc. (”Oracle”) and its licensors, if any. Any use of the Specification and the information described therein
will be governed by the terms and conditions of this Agreement.

Subject to the terms and conditions of this license, including your compliance with Paragraphs 1 and 2 below, Oracle
hereby grants you a fully-paid, non-exclusive, non-transferable, limited license (without the right to sublicense) under
Oracle’s intellectual property rights to:

1. Review the Specification for the purposes of evaluation. This includes: (i) developing implementations of the
Specification for your internal, non-commercial use; (ii) discussing the Specification with any third party; and (iii)
excerpting brief portions of the Specification in oral or written communications which discuss the Specification
provided that such excerpts do not in the aggregate constitute a significant portion of the Technology.

2. Distribute implementations of the Specification to third parties for their testing and evaluation use, provided that
any such implementation: (i) does not modify, subset, superset or otherwise extend the Licensor Name Space, or
include any public or protected packages, classes, Java interfaces, fields or methods within the Licensor Name Space
other than those required/authorized by the Specification or Specifications being implemented; (ii) is clearly and
prominently marked with the word ”UNTESTED” or ”EARLY ACCESS” or ”INCOMPATIBLE” or ”UNSTABLE”
or ”BETA” in any list of available builds and in proximity to every link initiating its download, where the list or link
is under Licensee’s control; and (iii) includes the following notice: ”This is an implementation of an early-draft
specification developed under the Java Community Process (JCP) and is made available for testing and evaluation
purposes only. The code is not compatible with any specification of the JCP.”

The grant set forth above concerning your distribution of implementations of the specification is contingent upon
your agreement to terminate development and distribution of your ”early draft” implementation as soon as feasible
following final completion of the specification. If you fail to do so, the foregoing grant shall be considered null and
void.

No provision of this Agreement shall be understood to restrict your ability to make and distribute to third parties
applications written to the Specification.

Other than this limited license, you acquire no right, title or interest in or to the Specification or any other Oracle
intellectual property, and the Specification may only be used in accordance with the license terms set forth herein.
This license will expire on the earlier of: (a) two (2) years from the date of Release listed above; (b) the date on
which the final version of the Specification is publicly released; or (c) the date on which the Java Specification
Request (JSR) to which the Specification corresponds is withdrawn. In addition, this license will terminate
immediately without notice from Oracle if you fail to comply with any provision of this license. Upon termination,
you must cease use of or destroy the Specification.

”Licensor Name Space” means the public class or interface declarations whose names begin with ”java”, ”javax”,
”com.oracle” or their equivalents in any subsequent naming convention adopted by Oracle through the Java
Community Process, or any recognized successors or replacements thereof

March 25, 2015 MVC iii

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Oracle or Oracle’s licensors is
granted hereunder. Oracle, the Oracle logo, and Java are trademarks or registered trademarks of Oracle America, Inc.
in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED ”AS IS” AND IS EXPERIMENTAL AND MAY CONTAIN DEFECTS OR
DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY ORACLE. ORACLE MAKES NO
REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY
PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does
not represent any commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE
INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY. ORACLE MAY MAKE
IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by the
then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ORACLE OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR
DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION,
EVEN IF ORACLE AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

You will hold Oracle (and its licensors) harmless from any claims based on your use of the Specification for any
purposes other than the limited right of evaluation as described above, and from any claims that later versions or
releases of any Specification furnished to you are incompatible with the Specification provided to you under this
license.

RESTRICTED RIGHTS LEGEND

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor
or subcontractor (at any tier), then the Government’s rights in the Software and accompanying documentation shall
be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department
of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your
evaluation of the Specification (”Feedback”). To the extent that you provide Oracle with any Feedback, you hereby:
(i) agree that such Feedback is provided on a non-proprietary and non- confidential basis, and (ii) grant Oracle a
perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense through multiple
levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose related to the
Specification and future versions, implementations, and test suites thereof.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N.

iv MVC March 25, 2015

Convention for the International Sale of Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other
countries. Licensee agrees to comply strictly with all such laws and regulations and acknowledges that it has the
responsibility to obtain such licenses to export, re-export or import as may be required after delivery to Licensee.

This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all prior or
contemporaneous oral or written communications, proposals, conditions, representations and warranties and prevails
over any conflicting or additional terms of any quote, order, acknowledgment, or other communication between the
parties relating to its subject matter during the term of this Agreement. No modification to this Agreement will be
binding, unless in writing and signed by an authorized representative of each party.

March 25, 2015 MVC v

vi MVC March 25, 2015

Contents

1 Introduction 1

1.1 Goals . 1

1.2 Non-Goals . 1

1.3 Additional Information . 2

1.4 Terminology . 2

1.5 Conventions . 2

1.6 Expert Group Members . 3

1.7 Acknowledgements . 3

2 Models, Views and Controllers 5

2.1 Controllers . 5

2.1.1 Controller Instances . 6

2.1.2 Viewable . 6

2.1.3 Response . 7

2.2 Models . 7

2.3 Views . 8

3 Exception Handling 11

3.1 Exception Mappers . 11

3.2 Validation Exceptions . 12

4 Events 15

4.1 Observers . 15

5 Applications 17

5.1 MVC Applications . 17

5.2 Providers in MVC . 17

6 View Engines 19

March 25, 2015 MVC vii

6.1 Introduction . 19

6.2 Selection Algorithm . 19

A Summary of Assertions 21

B Summary of Annotations 23

Bibliography 25

viii MVC March 25, 2015

Chapter 1

Introduction

Model-View-Controller, or MVC for short, is a common pattern in Web frameworks where it is used predom-
inantly to build HTML applications. The model refers to the application’s data, the view to the application’s
data presentation and the controller to the part of the system responsible for managing input, updating mod-
els and producing output.

Web UI frameworks can be categorized as action-based or component-based. In an action-based frame-
work, HTTP requests are routed to controllers where they are turned into actions by application code; in a
component-based framework, HTTP requests are grouped and typically handled by framework components
with little or no interaction from application code. In other words, in a component-based framework, the
majority of the controller logic is provided by the framework instead of the application.

The API defined by this specification falls into the action-based category and is, therefore, not intended to be
a replacement for component-based frameworks such as JavaServer Faces (JSF) [1], but simply a different
approach to building Web applications on the Java EE platform.

1.1 Goals

The following are goals of the API:

Goal 1 Leverage existing Java EE technologies.

Goal 2 Integrate with CDI [2] and Bean Validation [?].

Goal 3 Define a solid core to build MVC applications without necessarily supporting all the features in its
first version.

Goal 4 Explore layering on top of JAX-RS for the purpose of re-using its matching and binding layers.

Goal 5 Provide built-in support for JSPs and Facelets view languages.

1.2 Non-Goals

The following are non-goals of the API:

Non-Goal 1 Define a new view (template) language and processor.

March 25, 2015 MVC 1

Chapter 1. Introduction

Non-Goal 2 Support standalone implementations of MVC running outside of Java EE.

Non-Goal 3 Support REST services not based on JAX-RS.

Non-Goal 4 Provide built-in support for view languages that are not part of Java EE.

It is worth noting that, even though a standalone implementation of MVC that runs outside of Java EE is
a non-goal, this specification shall not intentionally prevent implementations to run in other environments,
provided that those environments include support for all the EE technologies required by MVC.

1.3 Additional Information

The issue tracking system for this release can be found at:

https://java.net/jira/browse/MVC SPEC

The corresponding Javadocs can be found online at:

https://mvc-spec.java.net/

The reference implementation can be obtained from:

https://ozark.java.net/

The expert group seeks feedback from the community on any aspect of this specification, please send com-
ments to:

users@mvc-spec.java.net

1.4 Terminology

Most of the terminology used in this specification is borrowed from other specifications such as JAX-RS and
CDI. We use the terms per-request and request-scoped as well as per-application and application-scoped
interchangeably.

1.5 Conventions

The keywords ‘MUST’, ‘MUST NOT’, ‘REQUIRED’, ‘SHALL’, ‘SHALL NOT’, ‘SHOULD’, ‘SHOULD
NOT’, ‘RECOMMENDED’, ‘MAY’, and ‘OPTIONAL’ in this document are to be interpreted as described
in RFC 2119[3].

Assertions defined by this specification are formatted as [[an-assertion]] using a descriptive name as the label
and are all listed in Appendix A.

Java code and sample data fragments are formatted as shown in figure 1.1:

2 MVC March 25, 2015

1.6. Expert Group Members

Figure 1.1: Example Java Code

1 package com.example.hello;
2
3 public class Hello {
4 public static void main(String args[]) {
5 System.out.println("Hello World");
6 }
7 }

URIs of the general form ‘http://example.org/...’ and ‘http://example.com/...’ represent application or
context-dependent URIs.

All parts of this specification are normative, with the exception of examples, notes and sections explicitly
marked as ‘Non-Normative’. Non-normative notes are formatted as shown below.

Note: This is a note.

1.6 Expert Group Members

This specification is being developed as part of JSR 371 under the Java Community Process. The following
are the present expert group members:

− Mathieu Ancelin (Individual Member)

− Ivar Grimstad (Individual Member)

− Neil Griffin (Liferay, Inc)

− Joshua Wilson (RedHat)

− Rodrigo Turini (Caelum)

− Stefan Tilkov (innoQ Deutschland GmbH)

− Guilherme de Azevedo Silveira (Individual Member)

− Frank Caputo (Individual Member)

− Christian Kaltepoth (Individual Member)

− Woong-ki Lee (TmaxSoft, Inc.)

− Paul Nicolucci (IBM)

− Kito D. Mann (Individual Member)

1.7 Acknowledgements

During the course of this JSR we received many excellent suggestions. Special thanks to Marek Potociar,
Dhiru Pandey and Ed Burns, all from Oracle. In addition, to everyone in the user’s alias that followed the
expert discussions and provided feedback.

March 25, 2015 MVC 3

Chapter 1. Introduction

4 MVC March 25, 2015

Chapter 2

Models, Views and Controllers

This chapter introduces the three components that comprise the MVC architectural pattern: models, views
and controllers.

2.1 Controllers

An MVC controller is a JAX-RS [4] resource method decorated by an @Controller annotation [[controller]].
If this annotation is applied to a class, then all resource methods in it are regarded as controllers [[all-
controllers]]. Using the @Controller annotation on a subset of methods defines a hybrid class in which
certain methods are controllers and others are traditional JAX-RS resource methods.

A simple hello-world controller can be defined as follows:

1 @Path("hello")
2 public class HelloController {
3
4 @GET
5 @Controller
6 public String hello() {
7 return "hello.jsp";
8 }
9 }

In this example, hello is a controller method that returns a path to a JavaServer Page (JSP). The semantics
of controller methods differ slightly from JAX-RS resource methods; in particular, a return type of String
is interpreted as a view path rather than text content. Moreover, the default media type for a response is
assumed to be text/html, but otherwise can be declared using @Produces just like in JAX-RS.

The return type of a controller method is restricted to be one of four possible types [[controller-types]]:

void A controller method that returns void is REQUIRED to be decorated by @View [[void-controllers]].

String The string returned is interpreted as a path to a view.

Viewable A Viewable is a class that encapsulates information about a view and how it is processed.

Response A JAX-RS Response whose entity’s type is one of the three above.

March 25, 2015 MVC 5

Chapter 2. Models, Views and Controllers

The following class defines equivalent controller methods:

1 @Controller
2 @Path("hello")
3 public class HelloController {
4
5 @GET
6 @View("hello.jsp")
7 public void helloVoid() {
8 }
9

10 @GET
11 public String helloString() {
12 return "hello.jsp";
13 }
14
15 @GET
16 public Viewable helloViewable() {
17 return new Viewable("hello.jsp");
18 }
19
20 @GET
21 public Response helloResponse() {
22 return Response.status(Response.Status.OK)
23 .entity("hello.jsp").build();
24 }
25 }

The @View annotation only applies to a method that returns void and it is ignored in all the other cases.

Note that, even though controller methods return types are restricted as explained above, MVC does not im-
pose any restrictions on parameter types available to controller methods: i.e., all parameter types injectable
in JAX-RS resources are also available in MVC controllers. Likewise, injection of fields and properties is
unrestricted and fully compatible with JAX-RS —modulo the restrictions explained in Section 2.1.1.

2.1.1 Controller Instances

Unlike in JAX-RS where resource classes can be native (created and managed by JAX-RS), CDI beans,
managed beans or EJBs, MVC classes are REQUIRED to be CDI-managed beans only [[cdi-beans]]. It
follows that a hybrid class that contains a mix of JAX-RS resource methods and MVC controllers must also
be CDI managed.

Like in JAX-RS, the default resource class instance lifecycle is per-request [[per-request]]. That is, an
instance of a controller class MUST be instantiated and initialized on every request. Implementations MAY
support other lifecycles via CDI; the same caveats that apply to JAX-RS classes in other lifecycles applied
to MVC classes. In particular, proxies may be necessary when, for example, a per-request instance is as a
member of a per-application instance. See [4] for more information on lifecycles and their caveats.

2.1.2 Viewable

The Viewable class encapsulates information about a view as well as, optionally, information about how
it should be processed. More precisely, a Viewable instance may include references to Models and

6 MVC March 25, 2015

2.2. Models

ViewEngine objects —for more information see Section 2.2 and Chapter 6, respectively. Viewable de-
fines traditional constructors for all these objects and it is, therefore, not a CDI-managed bean.

The reader is referred to the Javadoc of the Viewable class for more information on its semantics.

2.1.3 Response

Returning a Response object gives applications full access to all the parts in a response, including the
headers. For example, an instance of Response can modify the HTTP status code upon encountering an
error condition; JAX-RS provides a fluent API to build responses as shown next.

1 @GET
2 @Controller
3 public Response getById(@PathParam("id") String id) {
4 if (id.length() == 0) {
5 return Response.status(Response.Status.BAD_REQUEST)
6 .entity("error.jsp").build();
7 }
8 ...
9 }

Direct access to Response enables applications to override content types, set character encodings, set cache
control policies, trigger an HTTP redirect, etc. For more information, the reader is referred to the Javadoc
for the Response class.

2.2 Models

MVC controllers are responsible for combining data models and views (templates) to produce web applica-
tion pages. This specification supports two kinds of models: the first is based on CDI @Named beans, and the
second on the Models interface which defines a map between names and objects. Support for the Models
interface is mandatory for all view engines; support for CDI @Named beans is OPTIONAL but highly REC-
OMMENDED. Application developers are encouraged to use CDI-based models whenever supported, and
thus take advantage of the existing CDI and EL integration on the platform.

Let us now revisit our hello-world example, this time also showing how to update a model. Since we intent
to show the two ways in which models can be used, we define the model as a CDI @Named bean in request
scope even though this is only necessary for the CDI case:

1 @Named("greeting")
2 @RequestScoped
3 public class Greeting {
4
5 private String message;
6
7 public String getMessage() { return message; }
8 public void setMessage(String message) { this.message = message; }
9 ...

10 }

Given that the view engine for JSPs supports @Named beans, all the controller needs to do is fill out the
model and return the view. Access to the model is straightforward using CDI injection:

March 25, 2015 MVC 7

Chapter 2. Models, Views and Controllers

1 @Path("hello")
2 public class HelloController {
3
4 @Inject
5 private Greeting greeting;
6
7 @GET
8 @Controller
9 public String hello() {

10 greeting.setMessage("Hello there!");
11 return "hello.jsp";
12 }
13 }

If the view engine that processes the view returned by the controller is not CDI enabled, then controllers can
use the Models map instead:

1 @Path("hello")
2 public class HelloController {
3
4 @Inject
5 private Models models;
6
7 @GET
8 @Controller
9 public String hello() {

10 models.put("greeting", new Greeting("Hello there!");
11 return "hello.jsp";
12 }
13 }

In this example, the model is given the same name as that in the @Named annotation above, but using the
injectable Models map instead.

As stated above, the use of typed CDI @Named beans is recommended over the Models map, but support for
the latter may be necessary to integrate view engines that are not CDI aware. For more information about
view engines see Chapter 6.

2.3 Views

A view, sometimes also referred to as a template, defines the structure of the output page and can refer to
one or more models. It is the responsibility of a view engine to process (render) a view by extracting the
information in the models and producing the output page.

Here is the JSP page for the hello-world example:

1 <%@ page contentType="text/html;charset=UTF-8" language="java" %>
2 <html>
3 <head>
4 <title>Hello</title>
5 </head>
6 <body>

8 MVC March 25, 2015

2.3. Views

7 <h1>${greeting.message}</h1>
8 </body>
9 </html>

In a JSP, model properties are accessible via EL [5]. In the example above, the property message is read
from the greeting model whose name was either specified in a @Named annotation or used as a key in the
Models map, depending on which controller from Section 2.2 triggered this view’s processing.

March 25, 2015 MVC 9

Chapter 2. Models, Views and Controllers

10 MVC March 25, 2015

Chapter 3

Exception Handling

This chapter discusses exception handling in the MVC API. Exception handling is based on the underlying
mechanism provided by JAX-RS, but with additional support for validation exceptions that are common in
HTML form posts.

3.1 Exception Mappers

The general exception handling mechanism in MVC controllers is identical to that defined for resource meth-
ods in the JAX-RS specification. In a nutshell, applications can implement exception mapping providers for
the purpose of converting exceptions to responses. If an exception mapper is not found for a particular
exception type, default rules apply that describe how to process the exception depending on whether it is
checked or unchecked, and using additional rules for the special case of a WebApplicationException

that includes a response. The reader is referred to the JAX-RS specification for more information.

Let us consider the case of a ConstraintViolationException that is thrown as a result of a bean
validation failure:

1 @Controller
2 @Path("form")
3 public class FormController {
4
5 @POST
6 public Response formPost(@Valid @BeanParam FormDataBean form) {
7 return Response.status(OK).entity("data.jsp").build();
8 }
9 }

The method formPost injects a bean parameter of type FormDataBean which, for the sake of the ex-
ample, we assume includes validation constraints such as @Min(18), @Size(min=1), etc. The presence
of @Valid triggers validation of the bean on every HTML form post; if validation fails, a Constraint-
ViolationException (a subclass of ValidationException) is thrown.

An application can handle the exception by including an exception mapper as follows:

1 public class FormViolationMapper
2 implements ExceptionMapper<ConstraintViolationException> {
3

March 25, 2015 MVC 11

Chapter 3. Exception Handling

4 @Inject
5 private ErrorDataBean error;
6
7 @Override
8 public Response toResponse(ConstraintViolationException e) {
9 final Set<ConstraintViolation<?>> set = e.getConstraintViolations();

10 if (!set.isEmpty()) {
11 // fill out ErrorDataBean ...
12 }
13 return Response.status(Response.Status.BAD_REQUEST)
14 .entity("error.jsp").build();
15 }
16 }

This exception mapper updates an instance of ErrorDataBean and returns the error.jsp view (wrapped
in a response as required by the method signature) with the intent to provide a human-friendly description
of the exception.

Even though using exception mappers is a convenient way to handle exceptions in general, there are cases in
which finer control is necessary. The mapper defined above will be invoked for all instances of Constraint-
ViolationException thrown in an application. Given that applications may include several form-post
controllers, handling all exceptions using a single method makes it difficult to provide controller-specific
customizations. Moreover, exception mappers do not get access to the (partially valid) bound data, or
FormDataBean in the example above.

3.2 Validation Exceptions

MVC provides an alternative exception handling mechanism that is specific for the use case described in
Section 3.1. Rather than funnelling exception handling into a single location while providing no access to
the bound data, controller methods may opt to act as exception handlers as well. In other words, controller
methods can get called even if parameter validation fails as long as they declare themselves capable of
handling errors.

A controller class that, either directly or indirectly via inheritance, defines a field or a property of type
javax.mvc.validation.ValidationResult will have its controller methods called even if a valida-
tion error is encountered while validating parameters. Implementations MUST introspect the controller bean
for a field or a property of this type to determine the correct semantics; fields and property setters of this
type MUST be annotated with @Inject to guarantee proper bean initialization [[validation-result]].

Let us revisit the example from Section 3.1, this time using the controller method as an exception handler:

1 @Controller
2 @Path("form")
3 public class FormController {
4
5 @Inject
6 private ValidationResult vr;
7
8 @Inject
9 private ErrorDataBean error;

10
11 @POST

12 MVC March 25, 2015

3.2. Validation Exceptions

12 @ValidateOnExecution(type = ExecutableType.NONE)
13 public Response formPost(@Valid @BeanParam FormDataBean form) {
14 if (vr.isFailed()) {
15 // fill out ErrorDataBean ...
16 return Response.status(BAD_REQUEST).entity("error.jsp").build();
17 }
18 return Response.status(OK).entity("data.jsp").build();
19 }
20 }

The presence of the injection target for the field vr indicates to an implementation that controller methods
in this class can handle validation errors. As a result, methods in this class that validate parameters should
call vr.isFailed() to verify if validation errors were found. 1

The class ValidationResult provides methods to get detailed information about any violations found
during validation. Instances of this class are always in request scope; the reader is referred to the javadoc
for more information.

As previously stated, properties of type ValidationResult are also supported. Here is a modified version
of the example in which a property is used instead:

1 @Controller
2 @Path("form")
3 public class FormController {
4
5 private ValidationResult vr;
6
7 public ValidationResult getVr() {
8 return vr;
9 }

10
11 @Inject
12 public void setVr(ValidationResult vr) {
13 this.vr = vr;
14 }
15 ...
16 }

Note that the @Inject annotation has been moved from the field to the setter, thus ensuring the bean
is properly initialized by CDI when it is created. Implementations MUST give precedence to a property
(calling its getter and setter) over a field if both are present in the same class.

Editors Note 3.1 Support for injection of javax.mvc.validation.ValidationResult as a method
parameter may be re-considered based on any new capabilities available in CDI 2.0.

1The ValidateOnExecution annotation is necessary to ensure that CDI and BV do not abort the invocation upon
detecting a violation. Thus, to ensure the correct semantics, validation must be performed by the JAX-RS implementation before
the method is called.

March 25, 2015 MVC 13

Chapter 3. Exception Handling

14 MVC March 25, 2015

Chapter 4

Events

This chapter introduces a mechanism by which MVC applications can be informed of important events that
occur while processing a request. This mechanism is based on CDI events that can be fired by implementa-
tions and observed by applications.

4.1 Observers

The package javax.mvc.event defines a number of event types that MUST be fired by implementations
during the processing of a request [[event-firing]]. Implementations MAY extend this set and also provide
additional information on any of the events defined by this specification. The reader is referred to the
implementation’s documentation for more information on event support.

Observing events can be useful for applications to learn about the lifecycle of a request, provide application-
level logging, monitor performance, etc. Chapter 6 describes the algorithm used by implementations to
select a specific view engine for processing. This information is made available to any application (or
framework) that observes the ViewEngineSelected event. For example,

1 @ApplicationScoped
2 public class EventObserver {
3
4 public void onViewEngineSelected(@Observes ViewEngineSelected event) {
5 ...
6 }
7 }

Observer methods in CDI are defined using the @Observes annotation on a parameter position. The class
EventObserver is a CDI bean in application scope whose method onViewEngineSelected is called
every time a ViewEngineSelected event is fired by the implementation.

To complete the example, let us assume that the information about the selected view engine needs to be
conveyed to the client. To ensure that this information is available to a view returned to the client, the
EventObserver class can inject and update the same request-scope bean accessed by the view:

1 @ApplicationScoped
2 public class EventObserver {
3

March 25, 2015 MVC 15

Chapter 4. Events

4 @Inject
5 private EventBean eventBean;
6
7 public void onViewEngineSelected(@Observes ViewEngineSelected event) {
8 eventBean.setView(event.getView());
9 eventBean.setEngine(event.getEngine());

10 }
11 }

For more information about the interaction between views and models, the reader is referred to Section 2.2.

Events fired by implementations are synchronous, so it is recommended that applications carry out only
simple tasks in their observer methods, avoiding long-running computations as well as blocking calls.

Editors Note 4.1 Synchronous vs. asynchronous event processing should be reviewed based on any new
capabilities available in CDI 2.0.

16 MVC March 25, 2015

Chapter 5

Applications

This chapter introduces the notion of an MVC application and explains how it relates to a JAX-RS applica-
tion.

5.1 MVC Applications

An MVC application consists of one or more JAX-RS resources that are annotated with @Controller and,
just like JAX-RS applications, zero or more providers. If no resources are annotated with @Controller,
then the resulting application is a JAX-RS application instead. In general, everything that applies to a JAX-
RS application also applies to an MVC application. Some MVC applications may be hybrid and include a
mix of MVC controllers and JAX-RS resource methods.

The controllers and providers that make up an application are configured via an application-supplied sub-
class of Application from JAX-RS. An implementation MAY provide alternate mechanisms for locating
controllers, but as in JAX-RS, the use of an Application subclass is the only way to guarantee portability.

All the rules described in the Servlet section of the JAX-RS Specification [4] apply to MVC as well. This
section recommends the use of the Servlet 3 framework pluggability mechanism and describes its semantics
for the cases in which an Application subclass is present and absent.

The path in the application’s URL space in which MVC controllers live must be specified either using the
@ApplicationPath annotation on the application subclass or in the web.xml as part of the url-pattern
element. MVC applications SHOULD use a non-empty path or pattern: i.e., ”/” or ”/*” should be avoided
whenever possible.

The reason for this is that MVC implementations often forward requests to the Servlet container, and
the use of these values may result in the unwanted processing of the forwarded request by the JAX-RS
servlet once again. Most JAX-RS applications avoid using these values, and many use "/resources" or
"/resources/*" by convention. For consistency, it is recommended for MVC applications to use these
patterns as well.

5.2 Providers in MVC

Implementations are free use their own providers in order to modify the standard JAX-RS pipeline for the
purpose of implementing the MVC semantics. Whenever mixing implementation and application providers,
care should be taken to ensure the correct execution order using priorities.

March 25, 2015 MVC 17

Chapter 5. Applications

Editors Note 5.1 Should the range of priorities for any MVC-related providers be defined?

18 MVC March 25, 2015

Chapter 6

View Engines

This chapter introduces the notion of a view engine as the mechanism by which views are processed in MVC.
The set of available view engines is extensible via CDI, enabling applications as well as other frameworks
to provide support for additional view languages.

6.1 Introduction

A view engine is responsible for processing views. In this context, processing entails (i) locating and loading
a view (ii) preparing any required models and (iii) rendering the view and writing the result back to the client.

Implementations MUST provide built-in support for JSPs and Facelets view engines [[builtin-engines]].
Additional engines may be supported via an extension mechanism based on CDI. Namely, any CDI bean that
implements the javax.mvc.engine.ViewEngine interface MUST be considered as a possible target for
processing by calling its support method, discarding the engine if this method returns false [[extension-
engines]].

This is the interface that must be implemented by all MVC view engines:

1 public interface ViewEngine {
2
3 boolean supports(String view);
4
5 void processView(ViewEngineContext context) throws ViewEngineException;
6 }

6.2 Selection Algorithm

As explained in Section 2.1.2, a Viewable is an encapsulation for information that relates to a view. Every
possible return type from a controller method is either a Viewable or can be turned into one by calling a
constructor. Thus, the following algorithm assumes only Viewable as input.

Implementations should perform the following steps while trying to find a suitable view engine for a
Viewable [[selection-algorithm]].

1. If calling getViewEngine on the Viewable returns a non-null value, return that view engine.

March 25, 2015 MVC 19

Chapter 6. View Engines

2. Otherwise, lookup all instances of javax.mvc.engine.ViewEngine available via CDI. 1

3. Call supports on every view engine found in the previous step, discarding those that return false.

4. If the resulting set is empty, return null.

5. Otherwise, sort the resulting set in descending order of priority using the integer value from the
@Priority annotation decorating the view engine class or the default value Priorities.DEFAULT
if the annotation is not present.

6. Return the first element in the resulting sorted set, that is, the view engine with the highest priority
that supports the given Viewable.

If a view engine that can process a Viewable is not found, as a fall-back attempt to process the view
by other means, implementations are REQUIRED to forward the request-response pair back to the Servlet
container using a RequestDispatcher [[request-forward]].

The processView method has all the information necessary for processing in the ViewEngineContext,
including the view, a reference to Models, as well as the HTTP request and response from the underlying the
Servlet container. Implementations MUST catch exceptions thrown during the execution of processView
and re-throw them as ViewEngineException’s [[exception-wrap]].

Prior to the view render phase, all entries available in Models MUST be bound in such a way that they
become available to the view being processed. The exact mechanism for this depends on the actual view en-
gine implementation. In the case of the built-in view engines for JSPs and Facelets, entries in Models must
be bound by calling HttpServletRequest.setAttribute(String, Object); calling this method
ensures access to the named models from EL expressions.

A view returned by a controller method represents a path within an application archive. If the path is relative,
does not start with "/", implementations MUST resolve view paths relative to value of ViewEngine.
DEFAULT VIEW FOLDER, which is set to /WEB-INF/views/. If the path is absolute, no further processing
is required [[view-resolution]]. It is recommended to use relative paths and a location under WEB-INF to
prevent direct access to views as static resources.

1The @Any annotation in CDI can be used for this purpose.

20 MVC March 25, 2015

Appendix A

Summary of Assertions

[[controller]] Controller methods are JAX-RS resource methods annotated with @Controller.

[[all-controllers]] All resource methods in a class annotated with @Controller must be controllers.

[[controller-types]] A controller’s return type is limited as described in Section 2.1.

[[void-controllers]] Controller methods that return void must be annotated with @View.

[[cdi-beans]] MVC beans are managed by CDI.

[[per-request]] Default scope for MVC beans is request scope.

[[validation-result]] If validation fails, controller methods must still be called if a ValidationResult

field or property is defined.

[[event-firing]] All events in javax.mvc.event must be fired. See Javadoc for more information on each
event in that package.

[[builtin-engines]] Implementations must provide support for JSPs and Facelets.

[[extension-engines]] CDI beans that implement javax.mvc.engine.ViewEngine provide an extension
mechanism for view engines.

[[selection-algorithm]] Implementations must use algorithm in Section 6.2 to select view engines.

[[request-forward]] Forward request for which no view engine is found.

[[exception-wrap]] Exceptions thrown during view processing must be wrapped.

[[view-resolution]] Relative paths to views must be resolved as explained in Section 6.2.

March 25, 2015 MVC 21

Appendix A. Summary of Assertions

22 MVC March 25, 2015

Appendix B

Summary of Annotations

Annotation Target Description
Controller Type or method Defines a resource method as an MVC controller. If

specified at the type level, it defines all methods in a class
as controllers.

View Type or method Declares a view for a controller method that returns void.
If specified at the type level, it applies to all controller
methods that return void in a class.

March 25, 2015 MVC 23

Appendix B. Summary of Annotations

24 MVC March 25, 2015

Bibliography

[1] Edward Burns. JavaServer Faces 2.2. JSR, JCP, May 2013. See http://jcp.org/en/jsr/detail?id=344.

[2] Pete Muir. Context and Dependency Injection for Java EE 1.1 MR. JSR, JCP, April 2014. See
http://jcp.org/en/jsr/detail?id=346.

[3] S. Bradner. RFC 2119: Keywords for use in RFCs to Indicate Requirement Levels. RFC, IETF, March
1997. See http://www.ietf.org/rfc/rfc2119.txt.

[4] Santiago Pericas-Geertsen and Marek Potociar. The Java API for RESTful Web Services 2.0 MR. JSR,
JCP, October 2014. See http://jcp.org/en/jsr/detail?id=339.

[5] Kin man Chung. Expression Language 3.0. JSR, JCP, May 2013. See
http://jcp.org/en/jsr/detail?id=341.

March 25, 2015 MVC 25

	Contents
	1 Introduction
	1.1 Goals
	1.2 Non-Goals
	1.3 Additional Information
	1.4 Terminology
	1.5 Conventions
	1.6 Expert Group Members
	1.7 Acknowledgements

	2 Models, Views and Controllers
	2.1 Controllers
	2.1.1 Controller Instances
	2.1.2 Viewable
	2.1.3 Response

	2.2 Models
	2.3 Views

	3 Exception Handling
	3.1 Exception Mappers
	3.2 Validation Exceptions

	4 Events
	4.1 Observers

	5 Applications
	5.1 MVC Applications
	5.2 Providers in MVC

	6 View Engines
	6.1 Introduction
	6.2 Selection Algorithm

	A Summary of Assertions
	B Summary of Annotations
	Bibliography

