
 Manual

 Application: GWTEventService

 Software version: 1.2.1

 Document version: 1.2.1

 Last document update: 2012-12-21

 Project home: http://gwteventservice.googlecode.com/

 Project owner: strawbill UG (haftungsbeschränkt)

 Contact: info@strawbill.com

http://gwteventservice.googlecode.com/

2012-12-21

Contents
 1 Introduction... 3

 1.1 Advantages... 3
 2 Configuration.. 3

 2.1 Connection strategies... 4
 2.2 Shared sessions... 4

 3 Get started / Usage Guide.. 5
 3.1 Think of your needed events... 5
 3.2 Define your domains... 5
 3.3 Write your listeners and events...5
 3.4 Add events.. 6

 3.4.1 Add events from the server side...6
 3.4.2 Add events from the client side...7

 3.5 Project structure.. 7
 4 Connection-Handling.. 8

 4.1 Automatic reconnect... 8
 5 Domains.. 9

 5.1 User-specific domain.. 9
 6 Events... 9

 6.1 User-specific events... 9
 7 Unlisten / timeout listening.. 9

 7.1 Scopes.. 10
 7.1.1 Local... 10
 7.1.2 Unlisten... 10
 7.1.3 Timeout... 10

 7.2 Custom unlisten events... 11
 7.3 Rules... 11

 8 Server side event filtering... 11
 8.1 Registering of EventFilter objects...11
 8.2 EventFilter-API overview...12
 8.3 Chaining of EventFilter objects...12

 9 API - Overview.. 13
 9.1 API class diagram... 13

 9.1.1 Server side.. 13
 9.1.2 Client side... 14

 9.2 Polling compared to Comet / server-push...14
 9.2.1 Event listen strategy - Polling..15
 9.2.2 Server-push strategy – Long-Polling (default)...16
 9.2.3 Server-push strategy – Streaming..17

 10 Configuration loading.. 17
 10.1 Default configuration loading sequence..17
 10.2 Extending the configuration loading..18

 11 Maven... 18
 11.1 Maven Central Repository..18
 11.2 Building with Maven..18

 12 Deployment... 19
 12.1 Deployment of the demo application...20

 13 RoadMap.. 20
 14 Conclusion / Feedback... 21
 15 FAQ.. 21
 16 Appendix... 22

 16.1 Code examples... 22
 16.2 Demo application.. 24

GWTEventService 2 / 25

2012-12-21

 1 Introduction

GWTEventService is an event-based client-server communication framework. It uses GWT-RPC and the
Comet / server-push technique to publish events from the server to the clients or to exchange events
between the clients. Chapter 9.2 demonstrates how the communication with Comet / server-push works. The
client side offers a high-level API with opportunities to register listeners to the server like to a GUI
component. Events can be added to a domain on the server side and the listeners on the client side get
informed about the incoming events. The server side is completely independent of the client implementation
and is highly configurable. Domains can be defined to decide which events are important for the different
contexts. A domain can be handled as a unique key for a context.

It's not nearly as difficult as it is proclaimed to be.

 1.1 Advantages

– Encapsulation of the client-server communication

– High-level API with listeners and events

– Easy to use

– Only one open connection for event listening

– Reduction of server calls

– Reduction of connection peaks

– Events are returned directly when the event has occurred (instead of polling)

– Events are bundled to reduce server calls

– Server-side event filtering to reduce server calls

– Based on the GWT-RPC mechanism

– Automatic timeout recognition and handling with listening opportunities

– Extensible architecture

These advantages are not guaranteed for all cases and could also be disadvantages in some special cases
compared with polling or other technologies.

 2 Configuration

To get an application running with GWTEventService, the JARs of GWTEventService (eventservice.jar,
eventservice-rpc.jar and gwteventservice.jar) must be included in the classpath. These modules can get
downloaded from the project site (http://gwteventservice.googlecode.com) or Maven-based projects may
define a dependency to GWTEventService (see 11.1 - Maven Central Repository).

The gwt-xml must include an entry to inherit “de.novanic.eventservice.GWTEventService”.

Example

To configure GWTEventService you can use “eventservice.properties” or define servlet-parameters with the

GWTEventService 3 / 25

http://gwteventservice.googlecode.com/

2012-12-21

web-descriptor. The location of the properties file must be attached to the classpath of the server side
application. The default values and the description of the times can be seen in the following table.

Alternatively, a configuration loader can be defined if you want to load the configuration from another source.
The interface “ConfigurationLoader” must be implemented and must be attached as a custom loader. You
could take a look at chapter 10 (Configuration loading) to experience more about the usage of custom
configuration loaders.

Overview about the configurable times

Time in milliseconds / property Default value Description

Min. waiting time
“eventservice.time.waiting.min”

0 (ms) Time to wait at minimum (even when events have
already occurred)

Max. waiting time
“eventservice.time.waiting.max”

20000 (ms) Time to wait at maximum within one connection cycle
(canceled when an event occurred)

Timeout time
“eventservice.time.timeout”

90000 (ms) Time till timeout (when the time is reached, the user will
be removed from listening for events)

With that configuration possibilities, the server side behavior can be influenced very flexibly. If desired, it is
even possible to run GWTEventService in polling mode if min. waiting time is set to a value greater than zero
and max. waiting time is set to zero (server side polling mode). Please ensure that the connection or session
timeout settings are set to a higher value than the configured waiting times of GWTEventService. Otherwise
the effect could occur that no events are transferred to the clients because the web / application server has
already canceled the connection.

 2.1 Connection strategies

This version of GWTEventService supports two various connection strategies: Long-Polling and Streaming.
The two connection strategies are compared in chapter 9.2 to highlight the various advantages. Long-Polling
is configured as the default connection strategy.

Connection strategy property Connector class

eventservice.connection.strategy.server.connector Long-Polling (default):
de.novanic.eventservice.service.connection.strategy.co
nnector.longpolling.LongPollingServerConnector

Streaming:
de.novanic.eventservice.service.connection.strategy.co
nnector.streaming.StreamingServerConnector

eventservice.connection.strategy.client.connector Long-Polling (default):
de.novanic.eventservice.client.connection.strategy.conn
ector.DefaultClientConnector

Streaming:
de.novanic.eventservice.client.connection.strategy.conn
ector.streaming.GWTStreamingClientConnector

 2.2 Shared sessions

Multiple / shared sessions are necessary when the access to your application must be possible with more
than one browser instance per client (for example when your application must be controllable by various
browser tabs). The shared session support can be activated for GWTEventService but isn't defined as
default because the sending of user-specific events and the configuration of event filtering is more
complicated and not downward-compatible. The reason is that the client id has to be transferred with every
request and the requests of your own services can't and shouldn't be controlled by the framework.

The support of shared sessions can be activated with the following property.

GWTEventService 4 / 25

2012-12-21

Connection id generation property Connection id generator

eventservice.connection.id.generator de.novanic.eventservice.service.connection.id.Session
ExtendedConnectionIdGenerator

 2.3 Build / Test execution

If you want to execute the tests, you need to include the libraries JUnit 4.x or greater
(http://www.junit.org) and Mockito 1.9.x or greater (http://code.google.com/p/mockito). For more
information about building GWTEventService yourself and setup the project (with sources), please take a
look at chapter 11.2 (Building with Maven).

 3 Get started / Usage Guide

Here you can find a small tutorial to see how to get started with GWTEventService. Some UML diagrams to
understand and get an overview about the API can be found in chapter 9. The get started instructions should
help you to define your first domains and to write your first own listener and events. It's a little bit work to
define all the classes and to adjust the client and server side classes, but you should get a clean architecture
and design. Let's start to think, define and write.

 3.1 Think of your needed events

You may know listeners and events of different GUI frameworks like Swing or AWT. The client API of
GWTEventService works nearly the same way, but with the difference that you are registering the listeners
imaginable to the server. That listening method can theoretically resolve all polling calls to the server. You
need to think of and define the events which your client side has to know about. For example a conversation
application will at least need a UserJoinEvent, UserLeaveEvent and a NewMessageEvent. The events can
be simple Beans or POJOs and can theoretically get all serializable values which are available on the server
side. The Event interface is only a marker interface and there is logically no default implementation. The
domain can't knowingly be got from the Event, because the listener shouldn't be aware of the different
domains. If the listener has to differentiate between the different domains, it is a clear signal that you should
define different listeners. But when you really need the domain in your events, nothing stops you defining
your own abstract event... To learn more about events you can take a look into chapter 6 (Events), but that
isn't required to understand that get started guide.

 3.2 Define your domains

Domains are needed to distinguish the various contexts. Domains can be understood as a unique key / id
and it is nothing magic or complicated. For example you could have a UserJoinEvent which is triggered when
a user joined a game and you want to recognize that in a game list and on a waiting page. In that case you
could define a “game-domain” where all events important for the game go to (something like
GameStartEvent and UserLeaveEvent, etc.). Now you have the idea to write a conversation plugin for your
application. In that case you will also need a UserJoinEvent and UserLeaveEvent, but it shouldn't be handled
the same way like in the game context. To re-use the two events (or also the listener if it is factually possible)
you can define another domain like “conversation-domain” to avoid conflicts between the same events in
different contexts. More information about domains can be found in chapter 5 (Domains).

 3.3 Write your listeners and events

Now the interesting part: How can I make it work? First you will need to write your events like defined in 3.1.
The events must implement the Event interface (de.novanic.eventservice.client.Event), must be available to
the client- and to the server side and must be serializable, because the events are transferred from the
server to the client side. A simple project structure to reach that can be seen in the chapter 3.5 (Project
structure). In the most projects, the events will be added from the server side, because in the most cases the
events are known and triggered by the server and the events should be distributed to the clients, but it is also
possible to add events directly from the client side (see chapter 3.4 – Add events). On the server side events

GWTEventService 5 / 25

http://code.google.com/p/mockito/
http://www.junit.org/

2012-12-21

can be added via an EventExecutorService (method addEvent(Domain, Event)). An EventExecutorService
can be got from the EventExecutorServiceFactory or if you have a servlet, you can extend from
RemoteEventServiceServlet which is an implementation of EventExecutorService. That's it for the server
side.

The listeners must only be accessible by the client side, because the server doesn't need to know anything
about listeners. The only very logical method you need to implement is the “apply” method of the
RemoteEventListener interface (de.novanic.eventservice.client.listener.RemoteEventListener). The apply
method gets an Event as a parameter and your logic must be able to decide how to handle the event. It's a
good practice to define methods in a listener interface like “onUserJoin” and “onUserLeave” which can be
implemented in the real implementation of the listener. An adapter class or abstract implementation of the
listener can offer the apply method implementation. It is often needed to differ the events via “instanceof”
checks. That is planned to get improved with a later version of GWTEventService.

Complete code examples can be found in chapter 16.1 (Appendix: Code examples). Here is an example of
an implemented “apply” method:

GameUserListenerAdapter

public abstract class GameUserListenerAdapter implements GameUserListener
{

public void apply(Event anEvent) {
if(anEvent instanceof UserJoinEvent) {

onUserJoin((UserJoinEvent)anEvent);
} else if(anEvent instanceof UserLeaveEvent) {

onUserLeave((UserLeaveEvent)anEvent);
}

}

public void onUserJoin(UserJoinEvent aUserJoinEvent) {}

public void onUserLeave(UserLeaveEvent aUserLeaveEvent) {}
}

Now you have the events and the listeners. Maybe you recognized that you need a Domain
(de.novanic.eventservice.client.event.domain.Domain) to add an event. This is the last step: The registering
of listeners and adding of events with domains. A domain can be got from the DomainFactory
(de.novanic.eventservice.client.event.domain.DomainFactory) with a unique String (domain name). It would
be a good idea to hold the domain name or the Domain as a constant, available for the client- and server
side, to ensure that you access the right domains.

RemoteEventService (de.novanic.eventservice.client.event.RemoteEventService) can be used to register
and deregister listeners (client side). The equivalent methods are named “addListener” and
“removeListener”. All methods have an optional callback parameter, if you need to know when the change is
really active.

Something special and optional is the EventFilter (de.novanic.eventservice.client.event.filter.EventFilter).
EventFilter instances can be added from client side and are processed on server side. With an EventFilter
the server side can decide if an event is really important for the user or not. Please take a look into the
chapter 8 (Server side event filtering) when you want to learn more about filtering of events on the server
side.

 3.4 Add events

Events can be added from the client- and from the server side. The two different ways are described in the
following two sub-chapters.

 3.4.1 Add events from the server side

On the server side, events can be added via the EventExecutorService which can be got from the
EventExecutorServiceFactory. If you are using a servlet, you may extend from RemoteEventServiceServlet

GWTEventService 6 / 25

2012-12-21

which is an implementation of EventExecutorService and offers all methods to add events directly. The
EventExecutorService can be initialized per client (with the client id) to execute all actions directly with the
client. This client id is used to add user-specific events and to register EventFilter instances for the client and
isn't necessary to simply add domain global events. To initialize it with the client id, the client id could be
transferred via the ClientHandler or the request (HttpServletRequest) can be used for the initialization (as a
parameter for EventExecutorService#getEventExecutorService()).

Code snippet

EventExecutorServiceFactory theSF = EventExecutorServiceFactory.getInstance();
EventExecutorService theService = theSF.getEventExecutorService(<client id>);
theService.addEvent(<Domain>, <Event>);

 3.4.2 Add events from the client side

It is possible to add events directly from the client side. The RemoteEventService interface which is also
used to add listeners offers a addEvent(...) method which expects a domain and an event. User-specific
events can be added with the usage of the user-specific domain which is described in chapter 5.1 (User-
specific domain).

 3.5 Project structure

The architecture of GWTEventService requires that Event classes can be accessed from the server and from
the client side. That doesn't cause any problems, when your project does only consist of one module, but
when the client and server side code is split into different modules, you need to have at least one module
between the server and client side code. When your project currently doesn't support that requirement you
could derive your project structure from the following structure. It is divided into three modules. The server
side module can be compiled completely independent from the client side modules (without any GWT
limitations). The client side module could contain your client side GWT components (GUI) and the listeners.
The RPC module is between the server side and the client side module and must also be compatible to the
JRE emulation library of GWT. This module structure does also allow modularization of the web applications
because the server side and RPC modules can be deployed separately from the client side application.

As you can see in the graphic below, there aren't any dependency cycles with that structure of three
modules.

GWTEventService 7 / 25

2012-12-21

Example reference

The displayed project structure can be seen in the demo project “DemoConversationApp”.

 4 Connection-Handling

The connection-handling is completely solved internal of RemoteEventService
(de.novanic.eventservice.client.event.RemoteEventService). GWTEventService creates only one connection
to the server for event listening. The connection is opened when a listener is added and closed when the last
listener is removed. Therefore it's important that listeners are removed when they become unneeded. When
a listener is never removed, the connection is still open as long as the client is active (until timeout or
browser closed). The client logs activate and deactivate messages to control the connection-handling. There
are different ways to remove an unneeded listener: The listener can be removed directly, all listeners of a
domain can be removed (the listener object isn't needed) or all listeners can be removed. Look at the
RemoteEventService in the class diagram (chapter 9.1) and the corresponding JavaDoc for more
information. For more information take a look at the description of the various connection strategies in
chapter 9.2.

Additionally to the configured connection times (described in chapter 2), with the property
“eventservice.events.max” can be controlled how many events should be processed at maximum within one
connection. When this event limit is exceeded, the connection is re-scheduled at the latest. In the most cases
this property is only important when the application could trigger hundreds of events per second for one
client, so the default value is sufficient. In this case the connection could stay open till all of these events are
processed which may not desired.

Property Default value Description

eventservice.events.max 1.000 (events) This maximum amount of events is transferred via one
connection.

GWTEventService 8 / 25

2012-12-21

Technical hint: GWTEventService executes an initialization server call to load the configuration and to avoid
session handling issues.

 4.1 Automatic reconnect

GWTEventService starts reconnect attempts automatically when a connection problem occurred. The
number of automatic reconnect attempts can be configured with the property
“eventservice.reconnect.attempt.count”. For compatibility reasons this feature is deactivated by default
(default value is zero), but the recommended setting is value “2” (two reconnect attempts will be executed on
a connection failure). The recommended setting is included within the default eventservice.properties file
which may be used to setup new projects.

 5 Domains

Domains are a central element of GWTEventService to divide the registered users into the various contexts
of interest. That helps to make an application with various contexts more scalable and defined events can be
re-used. A domain can be understood as a unique id and can be simply created with one call to the
DomainFactory. The domain is used on the client side to register listeners to the domain and on the server
side to add events to the domain. That is why a domain should be held as a constant and must be accessible
from the client and from the server side. The String for the domain creation or the Domain itself should be
held as a constant to ensure that you access the right domains.

Code snippet

 Domain theDomain = DomainFactory.getDomain("your_context");

 5.1 User-specific domain

It is also possible to use GWTEventService without domains. In that case the user-specific domain
(DomainFactory#USER_SPECIFIC_DOMAIN) can be used to register listeners and to add events. The user-
specific domain makes sense when the application or some parts of the application only triggers user-
specific events. In that case the server side can add user-specific events (no domains are required for user-
specific events) and on the client side a listener can be registered with the user-specific domain. User-
specific events are described in chapter 6.1 (User-specific events).

 6 Events

An event implementation must implement the Event interface (de.novanic.eventservice.client.Event) and
must be available to the client- and to the server side. A simple project structure to reach that can be seen in
chapter 3.5 (Project structure). The Event interface is only a marker interface and logically there is no default
implementation available. The events can be simple Beans or POJOs and can theoretically get all
serializable values which are available on the server side. The event itself must also be serializable itself,
because it is transferred from the server to the clients. There are a few special rules for serializable types
(see http://code.google.com/docreader/#p=google-web-toolkit-doc-1-5&s=google-web-toolkit-doc-1-
5&t=DevGuideSerializableTypes for more information). Common made mistakes are for example that the
class doesn't have a default constructor (no arguments) or that final variables are not transferred.

 6.1 User-specific events

An event can also be added user-specifically instead of domain-specifically. This causes that the event can
be added on the server side and will only be received by the specified user / client. User-specific events can
be received with every listener without considering the domain of the registered listener. The listener to
receive user-specific events can be added with the user-specific domain. The user-specific domain is
described in chapter 5.1 (User-specific domain). The user id which is required to add user-specific events is
equal to the session id by default, but may vary depending from the configuration (for example by the

GWTEventService 9 / 25

http://code.google.com/intl/de-DE/docreader/#p=google-web-toolkit-doc-1-5&s=google-web-toolkit-doc-1-5&t=DevGuideSerializableTypes
http://code.google.com/intl/de-DE/docreader/#p=google-web-toolkit-doc-1-5&s=google-web-toolkit-doc-1-5&t=DevGuideSerializableTypes
http://code.google.com/intl/de-DE/docreader/#p=google-web-toolkit-doc-1-5&s=google-web-toolkit-doc-1-5&t=DevGuideSerializableTypes
http://code.google.com/docreader/#p=google-web-toolkit-doc-1-5&s=google-web-toolkit-doc-1-5&t=DevGuideSerializableTypes
http://code.google.com/docreader/#p=google-web-toolkit-doc-1-5&s=google-web-toolkit-doc-1-5&t=DevGuideSerializableTypes
http://code.google.com/intl/de-DE/docreader/#p=google-web-toolkit-doc-1-5&s=google-web-toolkit-doc-1-5&t=DevGuideSerializableTypes
http://code.google.com/intl/de-DE/docreader/#p=google-web-toolkit-doc-1-5&s=google-web-toolkit-doc-1-5&t=DevGuideSerializableTypes

2012-12-21

activation of Shared sessions - 2.2). The user id can also be got from the ConnectionIdGenerator accessible
via ConfigurationDependentFactory.

 7 Unlisten / timeout listening

GWTEventService cleans-up the internal user management system itself, when a timeout occurs or when all
listeners are removed. That information is provided with UnlistenEvent objects and applications which are
using GWTEventService can catch that information with an UnlistenEventListener. An UnlistenEventListener
can be registered the same way like other RemoteEventListener implementations, with the difference that
RemoteEventService#addUnlistenListener(...) must be called instead of
RemoteEventService#addListener(...). An unlisten event listener is defined globally and not domain
specifically, to catch also global unlisten events like a connection timeout which could affect more than one
domain at the time. There are various scopes, instead of domains, to define or specify the interests of the
unlisten listener. One part of the main unlisten concept is, that only unlisten events of users/clients can be
received, when the listening user is at least registered to one same domain like the removed user. A more
global scope shouldn't and mustn't be required, because it would cause too many unimportant unlisten
events.

 7.1 Scopes

There are three different scopes to customize the event occurrences (local, unlisten and timeout). The
default scope is unlisten and can be changed with an optional parameter of the registration of an unlisten
listener. The scopes are built on different levels. Scopes on higher levels contain all event occurrences of
scopes on lower levels.

Here is a short overview about the various scopes. Details about the single scopes are described in the sub-
chapters.

Overview about the various scopes

Scope Level Contained Scope Description Server calls

LOCAL 1 - Caused by connection issues between client and
server. Unlisten events of the local scope are only
generated for the own client and not published to
other users, but a timeout will be recognized on
the server side and published for the timeout
scope.

no

UNLISTEN 2 LOCAL Caused by calls of unlisten or by removing
listeners (for single domains and for all domains).

yes

TIMEOUT 3 LOCAL, UNLISTEN Caused by timeout detections on the server side,
for example when the browser of a user/client has
been closed.

yes

 7.1.1 Local

When the unlisten listener is registered with the local scope, unlisten events will only be triggered when the
own connection is interrupted. That could for example occur when the connection to the server is lost,
caused by a technical network issue or when the server is currently terminated or restarted. Unlisten
listeners registered with that scope can simply be tested by pulling the network connector and should get an
unlisten event directly. An Unlisten listener with the local scope isn't registered to the server side and causes
no server calls because it inspects only the own connection of the client side. When the user/client doesn't
reactivate the connection before the timeout time is exceeded, the user/client will be removed from the
server side, a timeout will be recognized and an unlisten event for the timeout scope will be produced.

GWTEventService 10 / 25

2012-12-21

 7.1.2 Unlisten

The unlisten scope contains the local scope and offers additional unlisten events which are produced by
unlisten calls or by removing listeners. The unlisten event contains the user id and the unlistened domain.
When all listeners are removed by one call (domain global unlisten), all unlistened domains are contained.
Instead of the local scope, the unlisten event will be produced on the server side and published to all
users/clients who have an unlisten listener with the unlisten scope registered.

 7.1.3 Timeout

The timeout scope contains the unlisten scope and the local scope, and offers additional unlisten events
which are produced by timeouts. The timeout is detected on the server side, when the configured timeout
time is exceeded for a user/client. The generated unlisten event will be published like the unlisten scope, to
all users/client who have an unlisten listener with the timeout scope registered. When the user/client was
registered to more than one domain, the unlisten event contains all unlistened domains.

 7.2 Custom unlisten events

For every user/client one custom unlisten event can be registered. That unlisten event must implement the
interface de.novanic.eventservice.client.event.listener.unlisten.UnlistenEvent or must extend from the
DefaultUnlistenEvent and can be registered with an optional parameter of
RemoteEventService#addUnlistenListener(...). That unlisten event will be held on the server side and sent to
all users/clients where an unlisten listener is registered. A user/client can only send one unlisten event before
the user/client information is cleaned-up on the server side. That is why only one custom unlisten event is
required. When no custom unlisten event is registered, a generic unlisten event with the user id and the
unlistened domains will be published. The custom unlisten event can contain any information which is
serializable, like all other events of GWTEventService.

 7.3 Rules

– Unlisten events which are published on scopes of lower levels will also be sent to scopes of higher
levels.

– Unlisten event listeners won't be removed automatically when all event listeners are removed for
single domains, because a listener for a single domain could only be removed temporarily and the
unlisten listener couldn't be re-registered automatically after that. The unlisten listener will be
removed when all listeners are removed (RemoteEventService#removeListeners(...)) or must be
removed manually with RemoteEventService#removeUnlistenListener(...).

 8 Server side event filtering

GWTEventService provides a mechanism to filter events directly on the server side when the events occur.
That is very useful in order to specify the interests more precisely within a domain. That task is processed by
EventFilter objects. For every client/user domain combination only one EventFilter can be registered, but
they are chainable appropriately to the filter pattern. That means EventFilter objects can be attached to other
EventFilter objects to build filter chains which are concurrently processable. A domain defines the compact
context and an EventFilter has the task to filter the events of a domain for the client/user depended interests.
Maybe some events that occur within a domain are only important for single users/clients. The advantage of
server side event filtering is that the events get filtered directly on the server side which can save
unnecessary server calls / connection cycles and can preserve the bandwidth. An EventFilter can be
specified for every user/client domain combination. That means, the users/clients within a domain can get
different EventFilter objects and every user/client can have different EventFilter objects according to the
various domains.

Example reference

The DemoConversationApp defines a conversation domain and filters the events for conversation channels

GWTEventService 11 / 25

2012-12-21

within the domain. That is used to guarantee that the registered user can only receive messages from users
of the same channel.

 8.1 Registering of EventFilter objects

An EventFilter can be set from the client and from the server side. The RemoteEventService of the client
side offers a method to register an EventFilter separately (RemoteEventService#registerEventFilter(...)). The
EventFilter can also be set with an optional parameter directly when a listener is registered to a domain. That
is the better option, when it is possible to create the EventFilter at the time, because it saves a server call
compared to the separately method. Of course deregister methods are also available according to the
register methods.

The server side classes EventService, RemoteEventServiceServlet, EventExecutorService and
EventRegistry provide methods to register EventFilter objects to user domain combinations.

 8.2 EventFilter-API overview

 8.3 Chaining of EventFilter objects

There are two types that support the chaining of EventFilter objects. When an EventFilter implementation
implements the AppendableEventFilter interface, another EventFilter can simply be attached to that
EventFilter. The attached EventFilter will be returned as an instance of AppendableEventFilter and another
EventFilter can be attached again, to build a filter chain. That option can save memory, because the filter
chain is built with memory saving references, but has a few limitations to the usability (attaching and getting
of attached EventFilter objects) and concurrent processing isn't effectively possible. The class
DefaultEventFilter is the default implementation of AppendableEventFilter and CascadingEventFilter. When
an EventFilter class extends from DefaultEventFilter and the appending of EventFilter objects is needed, the
EventFilter implementation must call the overridden DefaultEventFilter#match(...) method (with
super.match(...)).

The other option is to use a CompositeEventFilter. A composite filter chain has the advantages, that it is
easy to build by using the EventFilterFactory (EventFilterFactory#connect(...)) and it is easy to access the
attached EventFilter objects by CompositeEventFilter#getAttachedEventFilters(). Additionally the attaching
EventFilter objects must only implement the EventFilter interface instead of AppendableEventFilter. That
solution has the disadvantage that a few more memory is necessary, caused by the internal structure and

GWTEventService 12 / 25

2012-12-21

the top level composite EventFilter must be used for executing all sub EventFilter objects. The default
implementation is DefaultComposteEventFilter, but a composite EventFilter can also be created with the
above described EventFilterFactory.

 9 API - Overview

 9.1 API class diagram

 9.1.1 Server side

GWTEventService 13 / 25

2012-12-21

 9.1.2 Client side

GWTEventService 14 / 25

2012-12-21

 9.2 Polling compared to Comet / server-push

Polling is mostly used in simple web applications which need to check some server side states. Polling is an
easy, but inefficient way to check the server side for occurred events, because polling means that a request
is sent every x seconds to the server. Therefore, events are recognized lately and a lot of requests are sent
from every client.

Comet / server-push is a solution to reduce the expensive server calls and to send the occurred events
directly back to the client (without delays). There are two popular strategies to realize server-push. The first
one is called long-polling and offers a maximum of client and server compatibility. The other strategy which is
also supported by GWTEventService is streaming. Streaming requires client/browser specific
implementations, but is more accurate when a lot of events are sent continuously (for example when more
than one event per second per client is sent). Both strategies are supported by GWTEventService and long-
polling is defined as the default strategy of GWTEventService due to the maximum of compatibility. Read
chapter 9.2.3 for more information regarding streaming and chapter 2.1 to see how to activate streaming, if
your decision is the streaming strategy.

 9.2.1 Event listen strategy - Polling

The following sequence diagram shows the workflow of regular polling. The client sends a request in a
defined interval to check whether an event is available and the result is returned directly. Events which occur

GWTEventService 15 / 25

2012-12-21

between the requests / within the interval are received lately, caused by the fixed check interval. Another
disadvantage could be that more requests are sent than necessary.

 9.2.2 Server-push strategy – Long-Polling (default)

When Long-Polling is configured (default), the client sends a request to the server, the server waits till an

GWTEventService 16 / 25

2012-12-21

event occurs and sends the event directly back to the client via the response. After that, the client starts the
next request directly, to activate the event listening again. When events are occurred during the connection
cycle, all events are returned directly via the response and the cycle starts again. GWTEventService allows
to configure a max. waiting time to limit the server side waiting sequence to avoid possible timeout
detections.

The advantages and disadvantages are easy to notice. It offers a maximum of client and server compatibility,
because clean and normal request and response cycles are used and the client recognizes the server just
like a slow server. Therefore there are no client- or server-specific implementations required. The connection
cycles could be a disadvantage in some projects when a lot of events must be sent to the same clients within
a few seconds, because that causes continuously connection cycles.

The following sequence diagram demonstrates the workflow of Long-Polling.

GWTEventService 17 / 25

2012-12-21

 9.2.3 Server-push strategy – Streaming

Streaming is a server-push strategy which works without a lot of requests / connection cycles and therefore it
is useful when a lot of events per client are expected (for example more than one event per second per
client). One request is sent to the server and when an event occurs, it is sent back without sending the full
response. The GWTEventService implementation allows to set a max. waiting time to restart the connection
when no event has occurred within the max. waiting time. That can help to avoid any timeout recognitions
(by the client / browser or the web / application server).

The disadvantage of streaming is, that the client/browser needs a client-/browser-specific implementation
(some people would call it hack) to let the connection open and to handle the incoming events.
GWTEventService uses the hidden iframe technique like many other comet frameworks, because that is a
solution which can be defined quite universal and should work with all common browsers. However, some
browsers may display a loading indicator because the browser recognizes that the loading is still in progress
(which is true). That will be improved with future versions of GWTEventService by replacing the
implementations with browser-specific solutions one after another.

To activate streaming in GWTEventService (notice long-polling is defined as default) you should set the two
connection strategy properties which are described in chapter 2.1.

 10 Configuration loading

That chapter describes the possibilities to load configurations for GWTEventService.

 10.1 Default configuration loading sequence

There is a default sequence to load the GWTEventService configuration. At first, the properties file
“eventservice.properties” will be searched. When that properties file isn't found at the classpath, the
configuration parameters of the web-descriptor are taken. That means an eventservice.properties can be put
at the classpath to overwrite the configuration parameters of the web-descriptor. When no configuration
parameters / servlet-parameters are defined in the web-descriptor, the default configuration is loaded (min.
time zero seconds, max. time 20 seconds, timeout time 90 seconds). That sequence can be manipulated

GWTEventService 18 / 25

2012-12-21

and extended with custom configuration loaders and configuration levels. See chapter 10.2 (Extending the
configuration loading).

The default sequence to load the GWTEventService configuration is demonstrated below.

Position ConfigurationLoader ConfigLevel Default search location

1 PropertyConfigurationLoader DEFAULT (5000) /classes/eventservice.properties

2 WebDescriptorConfigurationLoader DEFAULT (5000) /WEB-INF/web.xml

3 DefaultConfigurationLoader HIGHEST (10000) -

 10.2 Extending the configuration loading

It is possible to manipulate or extend the configuration loading. For example to load the configuration from a
remote database or an external XML file. That can be done by implementing a ConfigurationLoader.
ConfigurationLoader is a simple interface which provides a load method and a method to check if the
configuration is available. That custom loader can be embedded in the loading process with
EventServiceConfigurationFactory which provides methods to add, remove and replace ConfigurationLoader
(de.novanic.eventservice.config.loader.ConfigurationLoader) registrations. ConfigurationLoader instances
must be registered to a ConfigLevel to define the order. There are five predefined levels (LOWEST, LOW,
DEFAULT, HIGH and HIGHEST). As seen in the table of chapter 10.1 (Default configuration loading
sequence), there are two configuration loaders at DEFAULT level and the DefaultConfigurationLoader is
registered to the HIGHEST level. An ConfigurationLoader which is registered at a higher level (after
DefaultConfigurationLoader) it hasn't an effect, because the DefaultConfigurationLoader is always available.
When a custom ConfigurationLoader should for example be checked before searching for a properties file, it
is recommend to register it to the LOW or LOWEST level or to a finer defined level which can be created with
ConfigLevelFactory.

 11 Maven

 11.1 Maven Central Repository

GWTEventService is available within the Maven Central Repository. It can be used from Maven-based
projects with the following dependency entry.

pom.xml (/project/dependencies)

<dependency>
<groupId>de.novanic.gwteventservice</groupId>
<artifactId>gwteventservice</artifactId>
<version>1.2.0</version>

</dependency>

 11.2 Building with Maven

The global Maven project configuration can be found in the root directory of GWTEventService and can be
executed by Maven when you would like to build GWTEventService manually. The build can be started for
example with “mvn clean install” which is one of the mostly used commands to build a Maven project. It
builds the whole project sources with documentation, demo applications, release-notes, RoadMap, etc., runs
the tests and creates the core- and developer-release archives. One of the advantages of Maven is that the
dependent libraries are gathered automatically by Maven, so no library directory has to be setup manually.
The most IDEs can handle Maven projects automatically. That means the project can be integrated within a
few steps.

As mentioned above, there are two various archives released with GWTEventService. The core-release
does only contain the absolutely necessary data to get an application using GWTEventService to run. Here
you can see the differences between the core- and the developer-release in detail.

GWTEventService 19 / 25

2012-12-21

core release developer release

jars yes yes

licence yes yes

about yes yes

system requirements yes yes

release-notes yes yes

default configuration yes yes

sources no yes

javadoc no yes

documentation no yes

demo application no yes

RoadMap no yes

 12 Deployment

The deployment of a GWT application which uses GWTEventService is very easy when your application is
already prepared for deploying. That short article describes the deployment with Apache Tomcat
(http://tomcat.apache.org/), but is also comparable to other web servers.

The JAR files of GWTEventService must simply be put into the “lib” directory of your WAR archive (or
exploded directory) and a servlet mapping must be added to your web module deployment descriptor
(web.xml). The following two figures show the structure of a WAR file containing the GWTEventService
library and a web.xml with the important part of the appropriate servlet mapping.

WAR structure

– WAR

– <your module path> (generated sources)

– META-INF

– WEB-INF

– classes (compiled application, shouldn't contain any files of GWTEventService)

– lib (libraries which are used by the application)

– gwt-servlet.jar

– eventservice.jar

– eventservice-rpc.jar

– gwteventservice.jar

– web.xml

web.xml

<web-app>

 ...

 <servlet>
 <servlet-name>EventService</servlet-name>

GWTEventService 20 / 25

http://tomcat.apache.org/

2012-12-21

 <servlet-class>
 de.novanic.eventservice.service.EventServiceImpl
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>EventService</servlet-name>
 <url-pattern>/<your-GWT-module-path>/gwteventservice</url-pattern>
 </servlet-mapping>

 ...

</web-app>

 12.1 Deployment of the demo application

When one of the demo applications is built via Maven (for example via “mvn clean install”), a WAR file will be
generated to the target directory. The created WAR file can be deployed normally to your web server. After
deploying the WAR file, you should reach the application with the following URL. The “democonversation”
part of the URL (name of the WAR file) may not be necessary/allowed, depending on the configuration of
your web server and the web server port could vary.

URL

http://localhost:8080/democonversation/DemoConversationAppUI.html

protocol server
name

: port / deployment name / WAR file / GWT module start page

http:// localhost : 8080 / democonversation / DemoConversationAppUI.html

 13 RoadMap

GWTEventService 1.0 – Initial main feature release (released)

GWTEventService 1.1 (released)

– Timeout listening (new UnlistenEventListener)

– EventFilter enhancements

– Optional configuration with the web descriptor (Web Container Config XML)

– Revised configuration loading

– Lock free programming

– A lot of refactorings

GWTEventService 1.2 (released)

– Preparations for new connection strategies (and support for streaming)

– Possibility to add events directly from the client side

– Automatic reconnect on connection loss

– Maven integration

GWTEventService 1.3

– Domain registry to improve the handling of domains

– Simplified listener-event mapping

GWTEventService 21 / 25

2012-12-21

– Support for subdomains

– Logging via SLF4J

GWTEventService 2.x

– Rule engine for event bundle definitions

– New puffer engine for waiting connections / clients

– Observable interface with reference implementations for Collections and Maps

– Extended internal command handling

– Historization of events

GWTEventService 3.x

– GWTEventService-Console (for monitoring and configuration)

The road map has the state of 2012-01-01. To get the current road map, see
http://code.google.com/p/gwteventservice/wiki/StartPage

 14 Conclusion / Feedback

We hope GWTEventService will fit all your needs to replace polling with a generic solution and supports you
to clean-up the architecture of client-server communication with GWT. We are looking forward to get some
feedback, suggestions or questions about the manual or the GWTEventService framework. You can contact
us via the GWTEventService forum or user group or via mail: info@strawbill.com

 15 FAQ

Q: Events or internal data of Events are not correctly transferred

A: Consider that Events must be serializable and require some special rules. For example the class does
require a no-argument constructor and variables declared as final are not transferred. For more
information see: http://code.google.com/docreader/#p=google-web-toolkit-doc-1-5&s=google-web-
toolkit-doc-1-5&t=DevGuideSerializableTypes

Another reason could be that the connection or session timeout settings of the web / application server
are configured to a smaller value than the configured waiting times of GWTEventService. This could
cause that the web / application server cancels the connection while GWTEventService is still waiting
for events. The received events can not be transferred back to the client, because the web / application
server has already canceled the connection. Please check also the default values of your web /
application server when no value was configured explicitly. On the other hand a client / browser could
also detect a timeout when the connection is too long opened. In that case a smaller max. waiting time
should be configured.

Q: Event listening doesn't work correctly with more than one web browser instance on the same client

A: That is a general problem of web browsers / web applications, because the browser uses the same
session for all web browser instances. To get it work you can run two or more different web browser
applications (for example the GWT Hosted Mode Browser and your standard web browser or two other
different web browsers when you have installed more than one). GWTEventService does also support
multiple/shared sessions to avoid that problem. See chapter 2.2 (Shared sessions) for more
information and how to activate the multiple/shared session support.

GWTEventService 22 / 25

http://code.google.com/docreader/#p=google-web-toolkit-doc-1-5&s=google-web-toolkit-doc-1-5&t=DevGuideSerializableTypes
http://code.google.com/docreader/#p=google-web-toolkit-doc-1-5&s=google-web-toolkit-doc-1-5&t=DevGuideSerializableTypes
mailto:info@strawbill.com
http://code.google.com/p/gwteventservice/wiki/StartPage

2012-12-21

 16 Appendix

 16.1 Code examples

Here are some code examples to demonstrate the implementation of events and listeners. UserJoinEvent
and UserLeaveEvent are subclasses of GameUserEvent. Chapter 16.2 is referencing to a complete demo
application using GWTEventService.

GameUserListener

package de.novanic.gwteventservice.manual.example;

import de.novanic.eventservice.client.event.listener.RemoteEventListener;
import de.novanic.gwteventservice.manual.example.event.UserJoinEvent;
import de.novanic.gwteventservice.manual.example.event.UserLeaveEvent;

public interface GameUserListener extends RemoteEventListener
{

void onUserJoin(UserJoinEvent aJoinEvent);

void onUserLeave(UserLeaveEvent aLeaveEvent);
}

GameUserListenerAdapter

package de.novanic.gwteventservice.manual.example;

import de.novanic.eventservice.client.event.Event;
import de.novanic.gwteventservice.manual.example.event.UserJoinEvent;
import de.novanic.gwteventservice.manual.example.event.UserLeaveEvent;

public abstract class GameUserListenerAdapter implements GameUserListener
{

public void apply(Event anEvent) {
if(anEvent instanceof UserJoinEvent) {

onUserJoin((UserJoinEvent)anEvent);
} else if(anEvent instanceof UserLeaveEvent) {

onUserLeave((UserLeaveEvent)anEvent);
}

}

public void onUserJoin(UserJoinEvent aUserJoinEvent) {}

public void onUserLeave(UserLeaveEvent aUserLeaveEvent) {}
}

GWTEventService 23 / 25

2012-12-21

GameUserEvent

package de.novanic.gwteventservice.manual.example.event;

import de.novanic.eventservice.client.event.Event;
import de.novanic.gwteventservice.manual.example.Game;
import de.novanic.gwteventservice.manual.example.User;

public class GameUserEvent implements Event
{

private Game myGame;
private User myUser;

public GameUserEvent() {}

public GameUserEvent(Game aGame, User aUser) {
setGame(aGame);
setUser(aUser);

}

public Game getGame() {
return myGame;

}

public void setGame(Game aGame) {
myGame = aGame;

}

public User getUser() {
return myUser;

}

public void setUser(User aUser) {
myUser = aUser;

}
}

GWTEventService 24 / 25

2012-12-21

Example class of usage

package de.novanic.gwteventservice.manual.example;

import de.novanic.eventservice.client.event.RemoteEventService;
import de.novanic.eventservice.client.event.RemoteEventServiceFactory;
import de.novanic.eventservice.client.event.domain.Domain;
import de.novanic.eventservice.client.event.domain.DomainFactory;
import de.novanic.gwteventservice.manual.example.event.UserJoinEvent;
import de.novanic.gwteventservice.manual.example.event.UserLeaveEvent;

public class UsageClass
{
 private static final Domain GAME_DOMAIN = DomainFactory.getDomain("gamedom”);

 public void init() {
 //do something

 RemoteEventServiceFactory theEventServiceFactory =
RemoteEventServiceFactory.getInstance();

 RemoteEventService theEventService =
theEventServiceFactory.getRemoteEventService();

 theEventService.addListener(GAME_DOMAIN, new GameUserListenerAdapter() {
 public void onUserJoin(UserJoinEvent userJoinEvent) {
 //do something with the new user
 }

 public void onUserLeave(UserLeaveEvent userLeaveEvent) {
 //do something with the leaved user
 }
 });

 //do something
 }
}

 16.2 Demo application

There is a very simple demo application called “HelloGWTEventService” for GWTEventService available
which shows the general usage of GWTEventService. The server side sends every five seconds an event
and the client side displays the occurred events in a list.

There is also a more complex demo application called “DemoConversationApp” available. It shows a small
conversation application with a channel system to demonstrate the “EventFilter” functionality. There is only
one domain for the conversation context and an EventFilter to divide the conversation into different channels.
The EventFilter is processed on the server side and checks the channels to decide if an event is important
for the particular user. If not, the connection is still active, otherwise the events are returned to the
client/user. Global events like “NewChannelEvent” or “CloseChannelEvent” are processed by the EventFilter
without a check for a channel.

The most important functionality is contained in the class “ConversationControl”
(de.novanic.gwteventservice.demo.conversationapp.client.conversation.control.ConversationControl) and
should be a good entry point to study the usage in practice.

Project-SVN-URL: http://gwteventservice.googlecode.com/svn/trunk/

Demo-SVN-URL: http://gwteventservice.googlecode.com/svn/trunk/demo/

GWTEventService 25 / 25

http://gwteventservice.google.com/
http://gwteventservice.google.com/

	1 Introduction
	1.1 Advantages

	2 Configuration
	2.1 Connection strategies
	2.2 Shared sessions
	2.3 Build / Test execution

	3 Get started / Usage Guide
	3.1 Think of your needed events
	3.2 Define your domains
	3.3 Write your listeners and events
	3.4 Add events
	3.4.1 Add events from the server side
	3.4.2 Add events from the client side

	3.5 Project structure

	4 Connection-Handling
	4.1 Automatic reconnect

	5 Domains
	5.1 User-specific domain

	6 Events
	6.1 User-specific events

	7 Unlisten / timeout listening
	7.1 Scopes
	7.1.1 Local
	7.1.2 Unlisten
	7.1.3 Timeout

	7.2 Custom unlisten events
	7.3 Rules

	8 Server side event filtering
	8.1 Registering of EventFilter objects
	8.2 EventFilter-API overview
	8.3 Chaining of EventFilter objects

	9 API - Overview
	9.1 API class diagram
	9.1.1 Server side
	9.1.2 Client side

	9.2 Polling compared to Comet / server-push
	9.2.1 Event listen strategy - Polling
	9.2.2 Server-push strategy – Long-Polling (default)
	9.2.3 Server-push strategy – Streaming

	10 Configuration loading
	10.1 Default configuration loading sequence
	10.2 Extending the configuration loading

	11 Maven
	11.1 Maven Central Repository
	11.2 Building with Maven

	12 Deployment
	12.1 Deployment of the demo application

	13 RoadMap
	14 Conclusion / Feedback
	15 FAQ
	16 Appendix
	16.1 Code examples
	16.2 Demo application

